Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 901593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664011

RESUMO

A typical characteristics of polydnavirus (PDV) infection is a persistent immunosuppression, governed by the viral integration and expression of virulence genes. Recently, activation of caspase-3 by Microplitis bicoloratus bracovirus (MbBV) to cleave Innexins, gap junction proteins, has been highlighted, further promoting apoptotic cell disassembly and apoptotic body (AB) formation. However, whether ABs play a role in immune suppression remains to be determined. Herein, we show that ABs transmitted immunosuppressive signaling, causing recipient cells to undergo apoptosis and dismigration. Furthermore, the insertion of viral-host integrated motif sites damaged the host genome, stimulating eIF5A nucleocytoplasmic transport and activating the eIF5A-hypusination translation pathway. This pathway specifically translates apoptosis-related host proteins, such as P53, CypA, CypD, and CypJ, to drive cellular apoptosis owing to broken dsDNA. Furthermore, translated viral proteins, such Vank86, 92, and 101, known to complex with transcription factor Dip3, positively regulated DHYS and DOHH transcription maintaining the activation of the eIF5A-hypusination. Mechanistically, MbBV-mediated extracellular vesicles contained inserted viral fragments that re-integrated into recipients, potentially via the homologous recombinant repair system. Meanwhile, this stimulation regulated activated caspase-3 levels via PI3K/AKT 308 and 473 dephosphorylation to promote apoptosis of granulocyte-like recipients Sf9 cell; maintaining PI3K/AKT 473 phosphorylation and 308 dephosphorylation inhibited caspase-3 activation leading to dismigration of plasmatocyte-like recipient High Five cells. Together, our results suggest that integration-mediated eIF5A hypusination drives extracellular vesicles for continuous immunosuppression.


Assuntos
Vesículas Extracelulares , Polydnaviridae , Caspase 3 , Fosfatidilinositol 3-Quinases , Polydnaviridae/fisiologia , Proteínas Proto-Oncogênicas c-akt
2.
Arch Insect Biochem Physiol ; 110(1): e21877, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35218062

RESUMO

Microplitis bicoloratus bracovirus (MbBV) induces apoptosis in hemocytes of the host (Spodoptera litura) via the cyclophilin A (CypA)-mediated signaling pathway. However, the mechanisms underlying CypA-mediated signaling during apoptosis remain largely unknown. Therefore, in this study, we investigated how CypA and apoptosis-inducing factor (AIF) interact during MbBV-mediated apoptosis. Our findings showed that MbBV induces apoptosis through the CypA-AIF axis of insect immune suppression. In MbBV-infected Spli221 cells, both the expression of the cypa gene and the release of AIF from the mitochondria increased the number of apoptotic cells. CypA and AIF underwent concurrent cytoplasm-nuclear translocation. Conversely, blocking of AIF release from mitochondria not only inhibited the CypA-AIF interaction but also inhibited the cytoplasmic-nuclear translocation of AIF and CypA. Importantly, the survival of the apoptotic phenotype was significantly rescued in MbBV-infected Spli221 cells. In addition, we found that the cyclosporine A-mediated inhibition of CypA did not prevent the formation of the CypA and AIF complex; rather, this only suppressed genomic DNA fragmentation. In vitro experiments revealed direct molecular interactions between recombinant CypA and AIF. Taken together, our results demonstrate that the CypA-AIF interaction plays an important role in MbBV-induced innate immune suppression. This study will help to clarify aspects of insect immunological mechanisms and will be relevant to biological pest control.


Assuntos
Polydnaviridae , Animais , Apoptose , Fator de Indução de Apoptose/metabolismo , Ciclofilina A/genética , Ciclofilina A/metabolismo , Polydnaviridae/fisiologia , Spodoptera/metabolismo
3.
Med Sci (Paris) ; 38(12): 1016-1027, 2022 Dec.
Artigo em Francês | MEDLINE | ID: mdl-36692281

RESUMO

Viruses can provide new biological functions to plants and animals. Some viruses persisting at low levels in plants might confer resistance to stress and parasites. In animals, more numerous examples of genes originating from viruses and used by different organisms have been described. For examples these genes might contribute to protect from new infections, or to ensure communication between neurons or to enable placenta development. In parasitic wasps, a complex viral machinery has been conserved as an endogenous virus dispersed in the wasp genome, which produces virions. These virions infect the parasitized host resulting in the production of virulence factors that inhibit defense mechanisms against the parasite. Different organisms have used the same viral functions repeatedly during animal evolution.


Title: Des virus bénéfiques pour les plantes et les animaux. Abstract: Les virus peuvent apporter de nouvelles fonctions aux organismes qui les portent. Chez les plantes, des virus, présents à des niveaux d'infection faibles, confèrent des propriétés de résistance aux stress et aux parasites. Chez les animaux, de plus nombreux exemples d'appropriation de gènes viraux, qui participent en particulier à la protection contre de nouvelles infections, à la communication entre les neurones, ou à la morphogenèse du placenta, ont été décrits. Chez les guêpes parasites, une machinerie virale complexe est conservée sous la forme d'un virus endogène dispersé dans le génome, leur permettant d'infecter l'hôte parasité et de lui faire exprimer des protéines inhibant ses propres mécanismes de défense. Les processus d'appropriation des mêmes fonctions virales se sont souvent répétés au cours de l'évolution. Cette revue aborde des exemples de symbioses virales (c'est-à-dire, des cas où le virus exploite un organisme-hôte en lui étant par ailleurs bénéfique), où l'apport positif des virus est bien documenté.


Assuntos
Polydnaviridae , Vírus , Vespas , Animais , Polydnaviridae/fisiologia , Vírus/genética , Vírion/fisiologia , Fenômenos Fisiológicos Virais , Fatores de Virulência
4.
PLoS Genet ; 17(9): e1009751, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34492000

RESUMO

Some DNA viruses infect host animals usually by integrating their DNAs into the host genome. However, the mechanisms for integration remain largely unknown. Here, we find that Cotesia vestalis bracovirus (CvBV), a polydnavirus of the parasitic wasp C. vestalis (Haliday), integrates its DNA circles into host Plutella xylostella (L.) genome by two distinct strategies, conservatively and randomly, through high-throughput sequencing analysis. We confirmed that the conservatively integrating circles contain an essential "8+5" nucleotides motif which is required for integration. Then we find CvBV circles are integrated into the caterpillar's genome in three temporal patterns, the early, mid and late stage-integration. We further identify that three CvBV-encoded integrases are responsible for some, but not all of the virus circle integrations, indeed they mainly participate in the processes of early stage-integration. Strikingly, we find two P. xylostella retroviral integrases (PxIN1 and PxIN2) are highly induced upon wasp parasitism, and PxIN1 is crucial for integration of some other early-integrated CvBV circles, such as CvBV_04, CvBV_12 and CvBV_24, while PxIN2 is important for integration of a late-integrated CvBV circle, CvBV_21. Our data uncover a novel mechanism in which CvBV integrates into the infected host genome, not only by utilizing its own integrases, but also by recruiting host enzymes. These findings will strongly deepen our understanding of how bracoviruses regulate and integrate into their hosts.


Assuntos
DNA Viral/genética , Integrases/metabolismo , Mariposas/genética , Polydnaviridae/fisiologia , Animais , Interações Hospedeiro-Parasita/genética , Mariposas/enzimologia , Mariposas/parasitologia , Polydnaviridae/genética , Vespas/genética , Vespas/fisiologia
5.
Curr Opin Insect Sci ; 44: 64-71, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33866043

RESUMO

Insect parasitoids have evolved symbiotic interactions with several viruses and thousands of parasitoid species have established mutualistic associations with polydnaviruses (PDVs). While PDVs have often been described as virulence factors allowing development of immature parasitoids inside their herbivore hosts, there is increasing awareness that PDVs can affect plant-insect interactions. We review recent literature showing that PDVs alter not only host physiology, but also feeding patterns and composition of herbivore's oral secretions. In turn PDV-induced changes in herbivore phenotype affect plant responses to herbivory with consequences ranging from differential expression of plant defense-related genes to wider ecological effects across multiple trophic levels. In this opinion paper we also highlight important missing gaps to fully understand the role of PDVs and other parasitoid-associated viral symbionts in a plant-insect interaction perspective. Because PDVs negatively impact performance and survival of herbivore pests, we conclude arguing that PDV genomes offer potential opportunities for biological control.


Assuntos
Herbivoria , Interações Hospedeiro-Parasita , Insetos/virologia , Controle Biológico de Vetores , Polydnaviridae/fisiologia , Animais , Insetos/parasitologia , Plantas , Simbiose , Vespas/virologia
6.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33591247

RESUMO

Bracoviruses (BVs) are endogenized nudiviruses that braconid parasitoid wasps have coopted for functions in parasitizing hosts. Microplitis demolitor is a braconid wasp that produces Microplitis demolitor bracovirus (MdBV) and parasitizes the larval stage of the moth Chrysodeixis includens. Some BV core genes are homologs of genes also present in baculoviruses while others are only known from nudiviruses or other BVs. In this study, we had two main goals. The first was to separate MdBV virions into envelope and nucleocapsid fractions before proteomic analysis to identify core gene products that were preferentially associated with one fraction or the other. Results indicated that nearly all MdBV baculovirus-like gene products that were detected by our proteomic analysis had similar distributions to homologs in the occlusion-derived form of baculoviruses. Several core gene products unknown from baculoviruses were also identified as envelope or nucleocapsid components. Our second goal was to functionally characterize a core gene unknown from baculoviruses that was originally named HzNVorf64-like. Immunoblotting assays supported our proteomic data that identified HzNVorf64-like as an envelope protein. We thus renamed HzNVorf64-like as MdBVe46, which we further hypothesized was important for infection of C. includens. Knockdown of MdBVe46 by RNA interference (RNAi) greatly reduced transcript and protein abundance. Knockdown of MdBVe46 also altered virion morphogenesis, near-fully inhibited infection of C. includens, and significantly reduced the proportion of hosts that were successfully parasitized by M. demolitor.


Assuntos
Mariposas/virologia , Polydnaviridae/fisiologia , Vírion/ultraestrutura , Animais , DNA Viral/química , DNA Viral/genética , Larva/virologia , Polydnaviridae/genética , Proteômica/métodos , Interferência de RNA , Proteínas Virais
7.
Sci Rep ; 10(1): 20746, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247223

RESUMO

The effects of toxicants, such as pesticides, may be more severe for some life stages of an organism than others. However, in most toxicity studies, data is developed for only one life stage, which may lead to misleading interpretations. Furthermore, population stage-structure may interact with differential susceptibility, especially when populations consist of higher proportions of individuals in more susceptible stages at the time of toxicant exposure. We explore the interaction of differential stage susceptibility and stage distribution using a stage-structured Lefkovitch matrix model. We incorporate lab-derived toxicity data for a common parasitoid, the braconid Diaeretiella rapae (M'Intosh), a common natural enemy of the cabbage aphid (Brevicoryne brassicae L.), exposed to the pesticide imidacloprid. We compare population outcomes of simulations in which we vary both the population stage structure along with the susceptibility of each stage to toxicants. Our results illustrate an interaction between differential susceptibility and initial stage distribution, highlighting the fact that both of these demographic features should be considered in interpreting toxicity data and the development of ecological risk assessments.


Assuntos
Brassica/parasitologia , Interações Hospedeiro-Parasita , Larva/fisiologia , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Polydnaviridae/fisiologia , Animais , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Polydnaviridae/efeitos dos fármacos , Dinâmica Populacional
8.
Insect Mol Biol ; 29(5): 477-489, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32683761

RESUMO

Polydnaviruses associated with ichneumonid parasitoid wasps (Ichnoviruses) encode large numbers of genes, often in multigene families. The Ichnovirus Vinnexin gene family, which is expressed in parasitized lepidopteran larvae, encodes homologues of Innexins, the structural components of insect gap junctions. Here, we have examined intracellular behaviours of the Campoletis sonorensis Ichnovirus (CsIV) Vinnexins, alone and in combination with a host Innexin orthologue, Innexin2 (Inx2). QRT-PCR verified that transcription of CsIV vinnexins occurs contemporaneously with inx2, implying co-occurrence of Vinnexin and Inx2 proteins. Confocal microscopy demonstrated that epitope-tagged VinnexinG (VnxG) and VinnexinQ2 (VnxQ2) exhibit similar subcellular localization as Spodoptera frugiperda Inx2 (Sf-Inx2). Surface biotinylation assays verified that all three proteins localize to the cell surface, and cytochalasin B and nocodazole that they rely on actin and microtubule cytoskeletal networks for localization. Immunomicroscopy following co-transfection of constructs indicates extensive co-localization of Vinnexins with each other and Sf-Inx2, and live-cell imaging of mCherry-labelled Inx2 supports that Vinnexins may affect Sf-Inx2 distribution in a Vinnexin-specific fashion. Our findings support that the Vinnexins may disrupt host cell physiology in a protein-specific manner through altering gap junctional intercellular channel communication, as well as indirectly by affecting multicellular junction characteristics.


Assuntos
Genes de Insetos/fisiologia , Genes Virais/fisiologia , Família Multigênica/fisiologia , Polydnaviridae/fisiologia , Spodoptera/genética , Transcrição Gênica , Animais , Interações Hospedeiro-Patógeno , Larva/genética , Larva/crescimento & desenvolvimento , Larva/parasitologia , Larva/virologia , Polydnaviridae/genética , Spodoptera/crescimento & desenvolvimento , Spodoptera/parasitologia , Spodoptera/virologia , Vespas/fisiologia , Vespas/virologia
9.
Virology ; 542: 34-39, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32056666

RESUMO

Polydnaviruses are obligate mutualists of parasitoid wasps and are divided into two genera, Bracovirus and Ichnovirus. Bracoviruses are thought to originate from a single integration of an ancestral nudivirus into the ancestor of microgastroid complex ~100 million years ago. However, all the known nudiviruses are only distantly related to bracoviruses, and much remains obscure about the origin of bracoviruses. Here we employ a paleovirological method to screen endogenous nudivirus-like elements across arthropods. Interestingly, we identify many endogenous nudivirus-like elements within the genome of Eurytoma brunniventris, a species of the Chalcidoidea superfamily. Among them, we find 14 core gene sequences are likely to be derived from a betanudivirus (designated EbrENV-ß), suggesting that betanudivirus has been circulating in parasitoid wasps. Phylogenomic analysis suggests that EbrENV-ß is the known closest relative of bracoviruses. Synteny analyses show the order of core genes is not well conserved between EbrENV-ß and nudiviruses, revealing the dynamic nature of the evolution of nudivirus genome structures. Our findings narrow down the evolutionary gap between bracoviruses and nudiviruses and provide novel insights into the origin and evolution of polydnaviruses.


Assuntos
Nudiviridae/classificação , Nudiviridae/genética , Polydnaviridae/classificação , Polydnaviridae/genética , Vespas/virologia , Animais , Evolução Molecular , Genoma de Inseto , Genoma Viral , Interações entre Hospedeiro e Microrganismos/genética , Nudiviridae/fisiologia , Filogenia , Polydnaviridae/fisiologia , Simbiose/genética , Integração Viral/genética , Vespas/genética , Vespas/fisiologia
11.
Curr Opin Insect Sci ; 32: 47-53, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31113631

RESUMO

Ichnoviruses (IVs) are mutualistic, double-stranded DNA viruses playing a key role in the successful parasitism of thousands of endoparasitoid wasp species. IV particles are produced exclusively in the female wasp reproductive tract. They are co-injected along with the parasitoid egg into caterpillar hosts upon parasitization. The expression of viral genes by infected host cells leads to an immunosuppressive state and delayed development of the host, two pathologies that are critical to the successful development of the wasp egg and larva. Ichnovirus is one of the two recognized genera within the family Polydnaviridae (polydnaviruses or PDVs), the other genus being Bracovirus (BV), associated with braconid wasps. IVs are associated with ichneumonid wasps belonging to the subfamilies Campopleginae and Banchinae; attempts to identify IV particles in other ichneumonid subfamilies have so far been unsuccessful. Functional studies targeting IV genes expressed in parasitized hosts, along with investigations of the molecular mechanisms responsible for viral morphogenesis in the female wasp, have resulted in a better understanding of the biology of these atypical viruses.


Assuntos
Lepidópteros/virologia , Polydnaviridae/fisiologia , Vespas/virologia , Animais , Lepidópteros/crescimento & desenvolvimento , Lepidópteros/parasitologia , Polydnaviridae/genética , Vírion/genética , Replicação Viral
12.
Mol Immunol ; 108: 89-101, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30784767

RESUMO

Polydnaviruses (PDVs) are obligatory symbionts found in thousands of endoparasitoid species and essential for successful parasitism. The two genera of PDVs, ichnovirus (IV) and bracovirus (BV), use different sets of virulence factors to ensure successful parasitization of the host. Previous studies have shown that PDVs target apoptosis, one of the innate antiviral responses in many host organisms. However, IV and BV have been shown to have opposite effects on this process. BV induces apoptosis in host cells, whereas some IV proteins have been shown to have anti-apoptotic activity. The different biological contexts in which the assays were performed may account for this difference. In this study, we evaluated the interplay between apoptosis and the ichnovirus HdIV from the parasitoid Hyposoter didymator, in the HdIV-infected hemocytes and fat bodies of S. frugiperda larvae, and in the Sf9 insect cell line challenged with HdIV. We found that HdIV induced cell death in hemocytes and fat bodies, whereas anti-apoptotic activity was observed in HdIV-infected Sf9 cells, with and without stimulation with viral PAMPs or chemical inducers. We also used an RT-qPCR approach to determine the expression profiles of a set of genes known to encode key components of the other main antiviral immune pathways described in insects. The analysis of immune gene transcription highlighted differences in antiviral responses to HdIV as a function of host cell type. However, all these antiviral pathways appeared to be neutralized by low levels of expression for the genes encoding the key components of these pathways, in all biological contexts. Finally, we investigated the effect of HdIV on the general antiviral defenses of the lepidopteran larvae in more detail, by studying the survival of S. frugiperda co-infected with HdIV and the entomopathogenic densovirus JcDV. Coinfected S. frugiperda larvae have increased resistance to JcDV at an early phase of infection, whereas HdIV effects enhance the virulence of the virus at later stages of infection. Overall, these results reveal complex interactions between HdIV and its cellular environment.


Assuntos
Imunidade , Polydnaviridae/fisiologia , Spodoptera/imunologia , Spodoptera/virologia , Animais , Apoptose , Sobrevivência Celular , Corpo Adiposo/citologia , Corpo Adiposo/virologia , Hemócitos/citologia , Hemócitos/virologia , Imunidade/genética , Larva/citologia , Larva/virologia , RNA de Cadeia Dupla/metabolismo , Células Sf9 , Ativação Transcricional/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-30623473

RESUMO

Microplitis bicoloratus bracovirus (MbBV) is a polydnavirus found in the parasitic wasp M. bicoloratus. Although MbBV is a known inducer of apoptosis in host hemocytes, the mechanism by which this occurs remains elusive. In this study, we found that expression of cyclophilin A (CypA) was significantly upregulated in Spodoptera litura hemocytes at 6-day post-parasitization. Similar results were reported in High Five cells (Hi5 cells) infected by MbBV, suggesting that the upregulation of CypA is linked to MbBV infection in insect cells. cDNA encoding CypA was cloned from parasitized hemocytes of S. litura, and bioinformatic analyses showed that S. litura CypA belongs to the cyclophilin family of proteins. Overexpression of S. litura CypA in Hi5 cells revealed that the protein promotes MbBV-induced apoptosis in vitro. Conversely, suppression of the expression and activity of CypA protein significantly rescued the apoptotic phenotype observed in MbBV-infected Hi5 cells, suggesting that it plays a key role in this process. MbBV infection also promoted the cytoplasmic-nuclear translocation of CypA in Hi5 cells. Taken together, these results suggest that MbBV infection upregulates the expression of CypA, which is required for MbBV-mediated apoptosis. Our findings provide insight into the role that CypA plays in insect cellular immune response.


Assuntos
Apoptose , Ciclofilina A/genética , Imunidade Celular , Proteínas de Insetos/genética , Polydnaviridae , Spodoptera/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Ciclofilina A/química , Ciclofilina A/metabolismo , Hemócitos/imunologia , Hemócitos/parasitologia , Interações Hospedeiro-Parasita , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Larva/fisiologia , Polydnaviridae/fisiologia , Homologia de Sequência de Aminoácidos , Spodoptera/crescimento & desenvolvimento , Spodoptera/parasitologia , Regulação para Cima , Vespas/crescimento & desenvolvimento , Vespas/fisiologia
14.
Dev Comp Immunol ; 92: 129-139, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30471301

RESUMO

In the parasitoid/polydnavirus/host system, polydnaviruses protect larva development in the host hemocoel by suppressing the host immune response. However, the negative effects on the parasitoid and the strategy of the parasitoid to deal with this disadvantage are still unknown. Microplitis bicoloratus bracovirus induces granulocyte apoptosis to suppress immune responses, resulting in an apoptotic haemolymph environment in which immature M. bicoloratus larva develop. Here, we determined the transcriptional profiles of immature M. bicoloratus across five time-points throughout the immature developmental process from egg to third instar. Dynamic gene expression pattern analysis revealed clear rapid changes in gene expression characteristic of each developmental stage, indicating faster sequential unambiguous functional division during development. Combined with the proteome of the host haemolymph, immature parasitoids likely secreted a Cu/Zn superoxide dismutase to reduce reactive oxygen species generation by symbiotic bracovirus. These data established a basis for further studies of parasitoid/host interactions and identified a novel positive self-protection mechanism for the parasitoid.


Assuntos
Granulócitos/fisiologia , Hemolinfa/imunologia , Polydnaviridae/fisiologia , Spodoptera/fisiologia , Superóxido Dismutase-1/metabolismo , Animais , Apoptose , Regulação da Expressão Gênica no Desenvolvimento , Hemócitos/fisiologia , Interações Hospedeiro-Patógeno , Terapia de Imunossupressão , Larva , Proteoma , Espécies Reativas de Oxigênio/metabolismo , Simbiose
15.
Proc Natl Acad Sci U S A ; 115(20): 5205-5210, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712841

RESUMO

Symbiotic relationships may provide organisms with key innovations that aid in the establishment of new niches. For example, during oviposition, some species of parasitoid wasps, whose larvae develop inside the bodies of other insects, inject polydnaviruses into their hosts. These symbiotic viruses disrupt host immune responses, allowing the parasitoid's progeny to survive. Here we show that symbiotic polydnaviruses also have a downside to the parasitoid's progeny by initiating a multitrophic chain of interactions that reveals the parasitoid larvae to their enemies. These enemies are hyperparasitoids that use the parasitoid progeny as host for their own offspring. We found that the virus and venom injected by the parasitoid during oviposition, but not the parasitoid progeny itself, affected hyperparasitoid attraction toward plant volatiles induced by feeding of parasitized caterpillars. We identified activity of virus-related genes in the caterpillar salivary gland. Moreover, the virus affected the activity of elicitors of salivary origin that induce plant responses to caterpillar feeding. The changes in caterpillar saliva were critical in inducing plant volatiles that are used by hyperparasitoids to locate parasitized caterpillars. Our results show that symbiotic organisms may be key drivers of multitrophic ecological interactions. We anticipate that this phenomenon is widespread in nature, because of the abundance of symbiotic microorganisms across trophic levels in ecological communities. Their role should be more prominently integrated in community ecology to understand organization of natural and managed ecosystems, as well as adaptations of individual organisms that are part of these communities.


Assuntos
Borboletas/parasitologia , Interações Hospedeiro-Parasita , Larva/parasitologia , Plantas/metabolismo , Polydnaviridae/fisiologia , Peçonhas/administração & dosagem , Vespas/parasitologia , Animais , Borboletas/fisiologia , Borboletas/virologia , Ecossistema , Regulação da Expressão Gênica de Plantas , Larva/fisiologia , Larva/virologia , Plantas/parasitologia , Plantas/virologia , Simbiose , Vespas/fisiologia , Vespas/virologia
16.
Proc Natl Acad Sci U S A ; 115(20): 5199-5204, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712862

RESUMO

Obligate symbioses occur when organisms require symbiotic relationships to survive. Some parasitic wasps of caterpillars possess obligate mutualistic viruses called "polydnaviruses." Along with eggs, wasps inject polydnavirus inside their caterpillar hosts where the hatching larvae develop inside the caterpillar. Polydnaviruses suppress the immune systems of their caterpillar hosts, which enables egg hatch and wasp larval development. It is unknown whether polydnaviruses also manipulate the salivary proteins of the caterpillar, which may affect the elicitation of plant defenses during feeding by the caterpillar. Here, we show that a polydnavirus of the parasitoid Microplitis croceipes, and not the parasitoid larva itself, drives the regulation of salivary enzymes of the caterpillar Helicoverpa zea that are known to elicit tomato plant-defense responses to herbivores. The polydnavirus suppresses glucose oxidase, which is a primary plant-defense elicitor in the saliva of the H. zea caterpillar. By suppressing plant defenses, the polydnavirus allows the caterpillar to grow at a faster rate, thus improving the host suitability for the parasitoid. Remarkably, polydnaviruses manipulate the phenotypes of the wasp, caterpillar, and host plant, demonstrating that polydnaviruses play far more prominent roles in shaping plant-herbivore interactions than ever considered.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Larva/imunologia , Lepidópteros/imunologia , Imunidade Vegetal/imunologia , Polydnaviridae/fisiologia , Solanum lycopersicum/imunologia , Vespas/fisiologia , Animais , Glucose Oxidase/metabolismo , Herbivoria , Larva/parasitologia , Larva/virologia , Lepidópteros/parasitologia , Lepidópteros/virologia , Comportamento Predatório , Simbiose , Integração Viral , Replicação Viral
17.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29769342

RESUMO

Polydnaviruses (PDVs) are essential for the parasitism success of tens of thousands of species of parasitoid wasps. PDVs are present in wasp genomes as proviruses, which serve as the template for the production of double-stranded circular viral DNA carrying virulence genes that are injected into lepidopteran hosts. PDV circles do not contain genes coding for particle production, thereby impeding viral replication in caterpillar hosts during parasitism. Here, we investigated the fate of PDV circles of Cotesia congregata bracovirus during parasitism of the tobacco hornworm, Manduca sexta, by the wasp Cotesia congregata Sequences sharing similarities with host integration motifs (HIMs) of Microplitis demolitor bracovirus (MdBV) circles involved in integration into DNA could be identified in 12 CcBV circles, which encode PTP and VANK gene families involved in host immune disruption. A PCR approach performed on a subset of these circles indicated that they persisted in parasitized M. sexta hemocytes as linear forms, possibly integrated in host DNA. Furthermore, by using a primer extension capture method based on these HIMs and high-throughput sequencing, we could show that 8 out of 9 circles tested were integrated in M. sexta hemocyte genomic DNA and that integration had occurred specifically using the HIM, indicating that an HIM-mediated specific mechanism was involved in their integration. Investigation of BV circle insertion sites at the genome scale revealed that certain genomic regions appeared to be enriched in BV insertions, but no specific M. sexta target site could be identified.IMPORTANCE The identification of a specific and efficient integration mechanism shared by several bracovirus species opens the question of its role in braconid parasitoid wasp parasitism success. Indeed, results obtained here show massive integration of bracovirus DNA in somatic immune cells at each parasitism event of a caterpillar host. Given that bracoviruses do not replicate in infected cells, integration of viral sequences in host DNA might allow the production of PTP and VANK virulence proteins within newly dividing cells of caterpillar hosts that continue to develop during parasitism. Furthermore, this integration process could serve as a basis to understand how PDVs mediate the recently identified gene flux between parasitoid wasps and Lepidoptera and the frequency of these horizontal transfer events in nature.


Assuntos
DNA Viral/metabolismo , Hemócitos/virologia , Manduca/virologia , Polydnaviridae/fisiologia , Proteínas Virais/metabolismo , Integração Viral/fisiologia , Animais , DNA Viral/genética , Hemócitos/metabolismo , Manduca/genética , Proteínas Virais/genética
18.
Dev Comp Immunol ; 83: 124-129, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29352983

RESUMO

Polydnaviruses (PDVs) are obligatory symbionts with parasitoid wasps. The PDV virions are produced solely in wasp (the primary host) calyx cells. They are injected into caterpillar hosts (the secondary host) during parasitoid oviposition, where they express irreplaceable actions to ensure survival and development of wasp larvae. Some of PDV gene products suppress host immune responses while others alter host growth, metabolism or endocrine system. Here, we treat new findings on PDV gene products and their action on immunity within secondary hosts.


Assuntos
Infecções por Vírus de DNA/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Polydnaviridae/fisiologia , Vírion/fisiologia , Vespas/virologia , Animais , Regulação da Expressão Gênica , Especificidade de Hospedeiro , Humanos , Larva , Oviposição
19.
Curr Opin Virol ; 25: 41-48, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28728099

RESUMO

In a remarkable example of convergent evolution, several parasitic wasp lineages have independently captured and maintained complex DNA virus machineries, used to transfer virulence factors. Parasitic wasps, which develop inside the larvae of their insect hosts, may inject Polydnaviruses (PDVs) or Virus-Like particles (VLPs), derived from the recurrent endogenization of several large DNA viruses. PDVs evolved from the domestication in braconid and ichneumonid wasps of viruses from different families and function as gene transfer agents. In contrast, the independent domestication of nudiviruses led to the evolution of both PDV and VLP strategies. In Venturia canescens, the endogenous nudivirus has lost the ability to encapsidate DNA, instead VLPs cargo virulence molecules of wasp origin to the parasitized host.


Assuntos
Evolução Molecular , Polydnaviridae/genética , Polydnaviridae/fisiologia , Vespas/virologia , Animais , DNA Viral , Genoma Viral , Mariposas/parasitologia , Vírion/genética , Vírion/fisiologia , Virulência , Fatores de Virulência/genética , Vespas/patogenicidade , Vespas/fisiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-28557004

RESUMO

Two physiological changes of Spodoptera litura parasitized by Microplitis bicoloratus are hemocyte-apoptosis and retarded immature development. ß-Chain of Fo F1 -ATPase was found from a S. litura transcriptome. It belongs to a conserved P-loop NTPase superfamily, descending from a common ancestor of Lepidopteran clade. However, the characterization of ß-chain of ATPase in apoptotic cells and its involvement in development remain unknown. Here, the ectopic expression and endogenous Fo F1 -ATPase ß-chain occurred on S. litura cell membrane: in vivo, at the late stage of apoptotic hemocyte, endogenous Fo F1 -ATPase ß-chain was stably expressed during M. bicoloratus larva development from 4 to 7 days post-parasitization; in vitro, at an early stage of pre-apoptotic Spli221 cells by infecting with M. bicoloratus bracovirus particles, the proteins were speedily recover expression. Furthermore, endogenous Fo F1 -ATPase ß-chain was localized on the apoptotic cell membrane. RNA interference (RNAi) of Fo F1 -ATPase ß-chain led to significantly decreased head capsule width. This suggested that Fo F1 -ATPase ß-chain positively regulated the development of S. litura. The RNAi effect on the head capsule width was enhanced with parasitism. Our research found that Fo F1 -ATPase ß-chain was expressed and localized on the cell membrane in the apoptotic cells, and involved in the development of S. litura.


Assuntos
Interações Hospedeiro-Parasita , Polydnaviridae/fisiologia , ATPases Translocadoras de Prótons/metabolismo , Spodoptera/parasitologia , Vespas/virologia , Sequência de Aminoácidos , Animais , Apoptose , Hemócitos/enzimologia , Larva/parasitologia , Spodoptera/enzimologia , Spodoptera/crescimento & desenvolvimento , Vespas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...